PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis.

نویسندگان

  • Yube Yamaguchi
  • Alisa Huffaker
  • Anthony C Bryan
  • Frans E Tax
  • Clarence A Ryan
چکیده

Pep1 is a 23-amino acid peptide that enhances resistance to a root pathogen, Pythium irregulare. Pep1 and its homologs (Pep2 to Pep7) are endogenous amplifiers of innate immunity of Arabidopsis thaliana that induce the transcription of defense-related genes and bind to PEPR1, a plasma membrane leucine-rich repeat (LRR) receptor kinase. Here, we identify a plasma membrane LRR receptor kinase, designated PEPR2, that has 76% amino acid similarity to PEPR1, and we characterize its role in the perception of Pep peptides and defense responses. Both PEPR1 and PEPR2 were transcriptionally induced by wounding, treatment with methyl jasmonate, Pep peptides, and pathogen-associated molecular patterns. The effects of Pep1 application on defense-related gene induction and enhancement of resistance to Pseudomonas syringae pv tomato DC3000 were partially reduced in single mutants of PEPR1 and PEPR2 and abolished completely in double mutants. Photoaffinity labeling and binding assays using transgenic tobacco (Nicotiana tabacum) cells expressing PEPR1 and PEPR2 clearly demonstrated that PEPR1 is a receptor for Pep1-6 and that PEPR2 is a receptor for Pep1 and Pep2. Our analysis demonstrates differential binding affinities of two receptors with a family of peptide ligands and the corresponding physiological effects of the specific receptor-ligand interactions. Therefore, we demonstrate that, through perception of Peps, PEPR1 and PEPR2 contribute to defense responses in Arabidopsis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BIK1 interacts with PEPRs to mediate ethylene-induced immunity.

Plants have evolved intricate immune mechanisms to combat pathogen infection. Upon perception of pathogen-derived signals, plants accumulate defense hormones such as ethylene (ET), jasmonate, salicylate, and damage-associated molecular patterns to amplify immune responses. In particular, the Arabidopsis peptide Pep1 and its family members are thought to be damage-associated molecular patterns t...

متن کامل

Identification of the Calmodulin-Binding Domains of Fas Death Receptor

The extrinsic apoptotic pathway is initiated by binding of a Fas ligand to the ectodomain of the surface death receptor Fas protein. Subsequently, the intracellular death domain of Fas (FasDD) and that of the Fas-associated protein (FADD) interact to form the core of the death-inducing signaling complex (DISC), a crucial step for activation of caspases that induce cell death. Previous studies h...

متن کامل

Layered pattern receptor signaling via ethylene and endogenous elicitor peptides during Arabidopsis immunity to bacterial infection.

Recognition of molecular patterns characteristic of microbes or altered-self leads to immune activation in multicellular eukaryotes. In Arabidopsis thaliana, the leucine-rich-repeat receptor kinases FLAGELLIN-SENSING2 (FLS2) and EF-TU RECEPTOR (EFR) recognize bacterial flagellin and elongation factor EF-Tu (and their elicitor-active epitopes flg22 and elf18), respectively. Likewise, PEP1 RECEPT...

متن کامل

Conformational studies of the interdomain linker peptides in the dihydrolipoyl acetyltransferase component of the pyruvate dehydrogenase multienzyme complex of Escherichia coli.

Two peptides (PEP1, 26 residues, and PEP2, 22 residues) were synthesized with amino acid sequences identical to two of the long segments of polypeptide chain rich in alanine, proline, and charged amino acids that link the lipoyl domains together in the dihydrolipoyl acetyltransferase component of the pyruvate dehydrogenase multienzyme complex of Escherichia coli. The circular dichroism and 400-...

متن کامل

The Arabidopsis PEPR pathway couples local and systemic plant immunity.

Recognition of microbial challenges leads to enhanced immunity at both the local and systemic levels. In Arabidopsis, EFR and PEPR1/PEPR2 act as the receptor for the bacterial elongation factor EF-Tu (elf18 epitope) and for the endogenous PROPEP-derived Pep epitopes, respectively. The PEPR pathway has been described to mediate defence signalling following microbial recognition. Here we show tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 22 2  شماره 

صفحات  -

تاریخ انتشار 2010